Flex: A Biologically-Inspired Legged Robot Using Electroactive Polymer Artificial Muscles

Scott Stanford, S Venkat Shastri, Ron Pelrine, Roy Kornbluh SRI International

December 4, 2000

Program Goals and Accomplishments

- The Office of Naval Research (ONR) wants a small (floppy disk to shoebox sized) legged robot which:
 - can navigate natural terrain to search for unexploded ordnance (UXO).
 - carries all electronics, sensors, and power onboard.
 - will operate for 20 to 30 minutes before recharging.
- SRI has built a prototype which we believe to be the first self-contained robot that uses electroactive polymer to walk.

Biological Inspiration: The American Cockroach

- Tripod gait is stable at wide range of speeds (Ting et al 1994).
- One of the fastest running insects.
- Overall center of mass oscillates less than a few tenths of a millimeter.
- Pitch, yaw, roll < 7 degrees.
- Low mass-specific mechanical energy while trotting.

Source: UC Berkeley

Actuator Choice: The Claims

- Just as muscle characteristics and performance are fundamental determinants of biological creatures, robot performance will be fundamentally determined by the actuators characteristics and performance.
- Biomimetic robots will require actuators with exceptional overall performance.
- Natural muscle is the standard by which we may judge actuators.

What Is an "Artificial Muscle?"

- Artificial actuators cannot and should not be exactly like natural muscle in all aspects.
 - power source
 - environmental conditions
 - materials and microstructure
 - response to stimulation
 - fatigue
- Actuators should reproduce only those characteristics of muscle that are beneficial for the application.

Which Actuator Characteristics Are Important?

- Energy (the most fundamental)
 - -energy density
 - –energy efficiency
 - -speed of response
- Force vs. Stroke
- Environmental Tolerance
- Power Supply Requirements
- Reliability and Robustness
- Passive or open-loop characteristics
 - -elasticity
 - –energy absorption: motor and a brake
 - –perturbation response: "preflex"
 - -backdrivability

Muscle vs. Artificial Muscle

•Average power output is same order of magnitude.

Source: UC Berkeley

Muscle Vs. Artificial Muscle

•Stress and strain behavior of muscle varies between species and within a single organism

•Work per cycle is frequency dependant for natural muscle

Note: EAP Activation not maximal

Source: UC Berkeley

Electroactive Polymer Artificial Muscle (EPAM)

Circular electroded area expands when the voltage is applied

Initial Legged Robot Muscle Specifications and Performance

- 1" X 1" X .04" double bowtie muscle
- 6 kV operational voltage
- 25% stroke (6 mm)
- 50 grams of force in each of 6 parallel layers for 300 grams per muscle group.

Legged Robot Kinematics

- Inspired by kinematics of American cockroach
 - Six legs, sprawled configuration
- Reduction in number of degrees of freedom
 - Cockroach has up to 5 degrees of freedom in each leg.
 - Robot design considers only two (up-down, front-back).
- Homogenization of front, middle and back legs
 - Cockroach has different limb lengths.
 - Robot considers uniform limb lengths to simplify manufacture.

Single Leg Simulation and Prototype

Full Robot Simulation and Prototype

Next Steps

- Increase artificial muscle force and stroke.
 - Next goal is to double results in each category.
- Streamline muscle fabrication process.
- Reduce robot weight.
- Investigate electronics for charge recovery.
 - Pumping charge could greatly reduce wasted energy.

